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SUMMARY 

A method for the uncoupled solution of three-dimensional biharmonic problems for the vector potential in 
viscous incompressible flow is presented. The strategy applied in a previous work on vector Poisson 
equations is employed to reduce the vector fourth-order problem to a sequence of scalar biharmonic 
problems. A finite element aimed at the implementation of the method in a discrete version is considered. A 
conjugate gradient algorithm which is particularly efficient for the uncoupled solution method is also 
described. 

1. INTRODUCTION 

In the study of two-dimensional viscous incompressible flows, the formulation based on the 
streamfunction and the biharmonic equation is attractive since one has to deal with only one 
scalar unknown. A detailed discussion of this formulation can be found in Reference 1 ,  while 
efficient methods for the numerical solution are proposed in Reference 2. 

The analogous formulation for the three-dimensional case is based on the vector potential, also 
called the stream vector, the curl of which is the velocity field of the fluid. However, except for the 
case of axisymmetric flows, one cannot expect to obtaifi a simple solution method, not even for 
the Stokes problem, since the three Cartesian components of the vector potential are strongly 
coupled through the boundary conditions (see e.g. Reference 3). 

Indeed, in order to attain a simplification comparable to the streamfunction, one should be 
able to express the Stokes problem at the very outset in the form of three independent biharmonic 
equations for the components of the vector unknown. In this work we present instead a method 
which enables one to transform the coupled biharmonic system for the vector potential into a 
fast-converging sequence of scalar biharmonic problems supplemented with non-homogeneous 
Dirichlet boundary conditions. This assertion is supported by numerical results obtained in 
Reference 4 using a finite element discretization proposed in Reference 5. Fast convergence is 
achieved by implementing the uncoupling technique via the conjugate gradient algorithm, 
similarly to a method recently proposed for the decoupled solution of vector Poisson equations 
with the divergence of the unknown prescribed on the boundary.6 

027 1-209 1/90/1408 1 1-1 2$06.OO 
0 1990 by John Wiley & Sons, Ltd. 

Received November 1989 



812 V. RUAS A N D  L. QUARTAPELLE 

The outline of the paper is as follows. After introducing the problem to solve in Section 2, in 
Section 3 we present the uncoupling technique for the continuous problem in a formal way. In 
Section 4 we consider a finite element method suitable for the discretization of the so-obtained 
decoupled formulation of the problem. Next we give in Section 5 an algorithm of the conjugate 
gradient type which is particularly handy for the discrete form of the proposed formulation. We 
conclude in Section 6 with some remarks. 

2.  THE STOKES PROBLEM IN TERMS OF THE VECTOR POTENTIAL 

In order to describe the uncoupling method in connection with the boundary conditions for the 
vector potential, it suffices to consider a stationary Stokes problem in a star-shaped bounded 
domain R c R3 with boundary r, namely 

- v A U + V p = f ,  

v * u  = 0, 

u Ir = b, 

(1) 

where u is the velocity field and p is the hydrostatic pressure, defined up to an additive constant. 
Furthermore, v is the coefficient of kinematic viscosity, f represents body forces and b denotes the 
velocity prescribed on r. The boundary datum b is assumed to satisfy the global condition 
J n  - b dT = 0, where n denotes the outer unit normal vector with respect to r. Although this is by 
no means essential, to simplify the presentation we shall assume that f, b and r are smooth 
enough to yield desirably smooth solutions. 

Since u is divergence-free, there exists a vector potential y such that 

v x y = u .  

Of course, y is defined only up to an additive gradient, say V%. Thus, assigning appropriately the 
value of A%, we can further require that y be divergence-free, i.e V - y = 0 (Euclidean gauge). This 
condition still leaves y defined up to the gradient of a harmonic function and can be enforced 
simply by imposing the boundary condition 

V - y l ,  = 0. (2) 
Apart from such a boundary condition, we must consider the boundary conditions induced by the 
original specification of velocity on the boundary, namely 

V x ~ 1 , -  = b 

or, expressing the normal and tangential components separately, 

n - V  x ylr = n - b  and n x V x Vlr  = n x b. 

Now we can take full advantage of the remaining arbitrariness of y by the gradient of a harmonic 
function, in order to transform the normal component of the boundary condition for V x y into a 
boundary condition for the tangential components of y,  in the form 

n x ylr = n x a, (3) 
where the tangential vector field a on the boundary is obtained from the datum n .  b through the 
solution of a scalar elliptic problem over the boundary (Beltrami problem).’ The tangential part 
of the velocity boundary condition is instead retained in its original form, namely 

(4) n x V x y l r = n  x b. 
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Let us now take the curl of the first equation in (1) to obtain the equation 

- V V  x [A(V x r)] = V x f 

or, using the vector identity V x V x . . . = - A .  . . + V ( V . .  . .), the equivalent equation 

V [ A ’ ~  - A V ( V . r ) ]  = V x f. 

Thus, if we are able to set suitable conditions on I, we can assert that I verifies 

VA‘V = V x f ( 5 )  

plus the boundary conditions (2H4). We have in fact five independent boundary conditions for y 
and the missing one can be chosen so that the term A[V(V - r ) ]  vanishes. Two possibilities arise 
quite naturally in this connection, namely n V (  V - y ) Ir = 0 and A( V - y )  I r  = 0. Actually, adding 
either of these two boundary conditions to (2H5), one can establish the equivalence between the 
resulting system and (1) through the relation V x = u, for a suitable pressure field. In this work, 
for technical reasons to be specified below, we will select the second natural boundary condition 

(6) 
As has been proved in Reference 3, the vector potential defined by (2H6) is the unique solution to 
the following variational problem: 

findyEH’(C2)suchthatnx v l r = n x a , n x V x  r l r = n X  b,V.(yl,=O;) 

CA(V. ~ l ) l  Ir = 0. 

v j n A w . A + =  j n v  x f .4,  q E x ,  
where * 

X = { ~ I + E H ’ ( R ) ,  n x +lr=O,  II x V x # lr=O,  V*+lr=O}.  

This is the reason for selecting condition (6), since problem (7) is a very convenient formulation in 
view of a decoupled solution method. Indeed, the coupling of the three components of y is due 
only to the boundary conditions implicit in space X. Actually, if we were assigned an additional 
essential boundary condition, namely 

problem (7) would simply become a (decoupled) set of three scalar biharmonic problems, i.e. 
n-yyl, = A, (8) 

where the boundary functions a, and pi are derived from a, b and /1 by a straightforward 
calculation and gi = (V  x f ) i .  Of course, if this is so, we must obtain A from the natural boundary 
condition (6), which was not explicitly taken into account in (9). A way of performing this is 
described in the following section. 

3. DETERMINING THE VALUES FOR THE MISSING ESSENTIAL BOUNDARY 
CONDITION 

Following the usual procedure in the influence matrix technique, we first write as 

*See Reference 8 for definitions of Sobolev spaces H’( D), D c R”, s E R. 
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where ( . , . )s,2,s denotes the duality product between H -3/’(1-) and H3/’(r), with s taken as the 
independent variable on r. The field yo belongs to H’(R) and verifies 

(1 1) 

(1 la) 
On the other hand, the field ys, Vs E r, is a distribution in the topological dual space of H (a) and 
is defined as follows: 

V A ’ W ~  = V x f, 

n.Wolr  = 0, 

V . y o l r  = 0, 

n x volr = n x a, 
n x V x yoJ, = n x b. 

V x y,,EH(curl,R) = ( + I ~ E L ’ ( Q ) ,  V x +eL2(R)} ,  

v - y , € H ; ( R )  = {U(UEH1(R), vIr=0}, (12) 

n x ysIr = 0 (in H-3’2(r)), n x V x Vslr = 0 (in H-’/’(r)), (13) 

x V x y;V x V x # +  V ( V . y s ) - V ( V . q i )  = A(V.q5)(s), V4eH5(R). (14) 

Using standard arguments, one can prove that such a field ys, besides the boundary conditions 
implicit in (12) and (13), satisfies 

S* 
A 2 y s  = 0 (in H-’(R)). (15) 

Moreover, since V‘~EH~’’(T), it is possible to find (a unique) $€H5(!2) such that 

V A ’ ~  = 0, 
CA(V.4)I  Ir = 5, 

V . 4  Ir = 0, 

n x 4 Ir = 0, 

n x V x #lr = O ,  

by applying Green’s formulae to (14) one can easily check that ys also satisfies 

( n * y S ,  O312.r = t(s), v t ~ H ~ ’ ’ ( r ) ,  (16) 
where ( .  , . )3/2,r denotes the duality product between H-3’2(r) and H3’’(r), s being now a 
fixed point of r. 

Remark I .  Perhaps a simpler way of interpreting equation (16) is as 

n . y s I r  = d(’)(n-sS) in ~ - ~ / ~ ( r ) ,  
where d(’)(a) is the surface Dirac distribution. 

We do not address here the question of the existence and uniqueness of yS. However, we can 
state that, although ys is not even a field of L2(R) in general, by construction 
( ys, A(s)),,,,EH’(R), In fact, we shall assume henceforth the same required smoothness for y 
and yo, which will consequently apply to ( ys, A(s)>,, , ,  as well. 

Anyhow, the point to be stressed for our purpose is the fact that, V S E ~ ,  ys can be determined 
by solving three decoupled scalar biharmonic problems with (singular) non-homogeneous 
Dirichlet conditions, which are formally defined by (12), (13), (16) together with a variational form 
associated with biharmonic equation (19, namely 

I n V  x V x y s - V  x V x 4 + V ( V . y s ) . V ( V . 4 )  = 0, V ~ E H ~ ( Q ) .  S* (17) 
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As a matter of fact, using the identity 

V x V x . .  . =  - A . .  . + V ( V . .  . .), (18) 

it is straightforward to conclude that (15) is equivalent to the (uncoupled) vector biharmonic 
problem 

Jo A ~ , - A +  = 0, V+EH:(R). 

Now, recalling (10) and the natural boundary condition (6), and the assumption that the data are 
smooth enough, we can write 

However, by definition we have 
L 

where (. , . 
identity (18) reiterately, we have 

denotes the duality product between Hm(R) and its dual. Moreover, using 

A 2 . . . = V ~ V x V x V x . , . + V ( V * A . . . ) ,  (19) 

which yields 

< v s , , V A ( V . v o ) ) 1 , n  = ( v , , , V  x ( v - ' f - V  x v x v x vo))1 ,n  

or, using (12), (1 3) and Green's formulae. 

( n ~ v s ~ , A ( V - v o ) ) 3 / 2 , i -  = v - l  v x f.vy,,--(v,,,  vo), (20) I 
where for every pair of fields v, + belonging to the spaces specified in (12), (13) we set 

a ( v , + ) =  v x v x V'V x v x ++  V ( V . y / ) . V ( V . + ) .  (21) I b 
In fact, (20) was derived by exploiting again the boundary conditions for ySr and the assumed 
smoothness of yo. Analogously we have 

( n . yS', AV . ( vS', 4 s )  ) 3 p , s  )3 /2 .  r = ( VI,,, VAV * .( v ~ ' ,  d(s) )3/2,, ) 1 ,  n 

r 

As a conclusion, the unknown A can be determined by solving the following problem: 
r 



816 V. RUAS AND L. QUARTAPELLE 

Remark 2. As a matter of fact, for a given x E R, y,( x)  depends continuously on s for a smooth 
domain, so that we can actually write 

<V,(X), w ) 3 , * , s  = $(x, s)A(s)ds, 
Jr 

where $(x, s) = ys( x), Vs E r, Vx E R. Thus, applying Fubini’s theorem, problem (23) can also be 
written as 

P c 

Remark 3.  The left-hand side of (23) corresponds to the influence matrix indexed by s and s’. 

4. FINITE ELEMENT DISCRETIZATION 

To implement the method described in the previous section, the basic tool that is needed is an 
efficient finite element method for solving scalar biharmonic-problems in R3 of type (9), together 
with the linear problem (23). 

We shall consider here a non-conforming quadratic finite element of first order in the energy 
norm, first introduced in Reference 5. After recalling the precise definition of the element, we will 
treat some computational aspects pertaining to the specific application we are interested in. In 
particular, we will define a discrete analogue of the surface Dirac distribution. Moreover, we will 
describe the way of approximating boundary unknown jl related to this finite element approxima- 
tion. 

Let us be given a family (Th},, of tetrahedrizations of R, assumed to be quasi-uniform in the 
usual sense. Here h denotes the maximum edge length of the tetrahedrons belonging to Th. We 
assume that Th fits Iz in the sense that the intersection of any tetrahedron T E  Th with r is either 
empty or coincides with one or more faces, edges or vertices of T. 

For each T E T ,  the quadratic finite element method is defined by the following set of 10 degrees 
of freedom: 

(1) the mean values of the function over each edge 
(2) the first-order normal derivatives of the function at the barycentre of each face in a given 

Here the mean value of a function v over an edge e is to be understood as Je v de/ I el, where I el 
denotes the length of e. 

Now we define v,, to be the space of (scalar) functions whose restriction to every tetrahedron of 
Th is quadratic and such that the degrees of freedom above coincide at inter-elemental boundaries. 
We further define Vh,o to be the subspace of vh consisting of those functions whose degrees of 
freedom vanish whenever the corresponding edge or face is a boundary edge or face. Here a 
boundary edge means an edge of an element T E  Th whose intersection with r contains its two end 
points, and a boundary face means a face of T E T ,  whose intersection with r contains its three 
vertices. 

We also have to define the affine manifold vh,#fi of vh in order to take into account the non- 
homogeneous boundary conditions of problem (9). Let us first denote by E, the set of boundary 
edges and by Fh the set of boundary faces. The degrees of freedom of a function of vh,=fi attached to 
e E E, are defined as follows. Let F L’) and F L2) be the boundary faces of T E  Th whose intersection 
is e. Referring to Figure 1, we denote by ze the plane bisecting the dihedron formed by faces F b’) 

sense (outwards or inwards). 
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and F L2) oriented towards the interior of 51, and by n, the straight line of ne orthogonal to e 
passing through the midpoint of the latter. The degree of freedom attached to each eEE,  of a 
function of Vh,aS is the value of CL at Pe, namely the intersection, lying closest to e, of n, with r (or of 
n, with y e ,  where y e  = n, n r). As for the normal derivative of a function of Vh,aS at the barycentre 
GF of a face F E F,, we define it to be the value of fl at the point MF, namely the intersection with 
lying closest to F of the perpendicular to F passing through GF (refer to Figure 2). 

the vector potential, namely 
Let us now define a discrete analogue of problem (9) associated with the component $i z $ of 

where g is an appropriate right-hand side ( g  = gi = ( V  x f)i in the specific case of problem (7)). 

Figure 1. Boundary faces F h” and F :*) 

Figure 2. Shifting from M F e  r to the barycentre of F E F, 
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Bilinear form d,, is a discrete analogue of fnA$A4,  namely 

whereas = uTETh T. 

Remark 4 .  Note that, V$EH~(Q, )  and V$E HZ(Q,), d,,($, 4 )  = jn,,A$A4 (see e.g. Reference 
5), but this equivalence is false if $ E vh and 4 E &,o. 

The computation of the approximation 4, to 4 and of the approximation $i ,h  to t,bi, i = 1,2,3 
(assuming that 1 is known), follows standard and straightforward procedures applied to problem 
(24). Therefore we choose here to illustrate the use of this problem in the case of the computation 
of approximations of vs, S E  r, in [ v,,] '. 

First of all, in the discrete case, instead of computing for every s E r a discrete analogue of ys, 
we will select only one point per edge of E,. In other words, we need only v , , ~ ,  namely an 
approximation of vs, where s is the point P,. Notice that the data cli and pi are not really functions 
in this case, but, as far as the discrete problem is concerned, all that is needed are boundary 
degrees of freedom of n;y/,,. which would tend in a reasonable sense to the surface Dirac 
distribution at a point of as h goes to zero, n, being the unit vector in the direction of n,. The 
natural way of defining such a degree of freedom is as follows. 

Let pe  be the basis function of Vh associated with edge e E E,,, i.e. fep, de = 1 e 1, whereas all of its 
remaining degrees of freedom vanish. The support of pe  is just the set of tetrahedrons whose 
intersection is e,  and clearly the only boundary faces over which pe  does not vanish identically are 
F and F p). Quite naturally we would then like n - v,,& to verify the condition 

n; vh,& d F  = 1.  s F' , * )nFLzl  

Thus the degree of freedom d, of n; vh,& attached to e must satisfy 

while the remaining edge degrees of freedom of vh,, vanish. 
However, in order to take into account the boundary condition n x V x vS I r  = 0, we must 

compute normal derivative degrees of freedom at the barycentre of both F and F i2) for the two 
tangential components of vh,e with respect to those faces. Letting G!) be the barycentre of F f ) ,  r 
= 1,2, z$) be any unit tangential vector of F :), and n:) be the unit normal vector with respect to 
F F), we have 

Incidentally, all the degrees of freedom of n:): v , , ~  associated with edges of E, vanish, except for 
the one associated with e itself, whose value is precisely df)  = d,nf).n,. On the other hand, 
according to Reference 5, any tangential derivative of np).  v,,, at C:) is given by a(zf)) df),  where 
the coefficient a(z:)) depends only on face F f )  (besides zf) itself). For example, if z f )  is parallel to 
an edge e' of F f )  different from e, and is oriented from e towards the opposite vertex, then 

a(nf''dVh,e) = dk" 
az:) 2 le'( * 
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Finally, once we know the degrees of freedom for the tangential and the normal components, it is 
straightforward to transform them into degrees of freedom for the Cartesian components of v,,, 
After performing this, the computation of v,,, reduces to the solution ofa set of three (uncoupled) 
scalar problems of type (24). 

Although only geometrical data related to the tetrahedrization are required to determine the 
boundary degrees of freedom for vh,e, clearly enough it is too costly to compute this field for 
every e E E, in order to apply a discrete version of problem (23) which gives an approximation &, 
of A. This is why we have adopted a different strategy, to be described in the next section. 
However, before entering into it, let us introduce the definition of the space A,, in which we search 
for A,,. 

First of all, to every eEE, we associate a spatial quadrilateral Q, whose vertices are the 
extremities of e, S ,  and SL, and the barycentres CC), r = 1,2, as illustrated in Figure 3. By 
definition, A,, is the space of functions defined on r,, the boundary of R, (or equivalently 
ueEE,Qe), whose restriction to each Q, is constant. Now, letting Mh = card Eh, we have dim Ah 
= M, and, if we actually number the edges of E, as e l ,  e 2 , .  . . , eMh,  we may write 

where xm is the characteristic function of Q,,. 

5. COMPUTATIONAL SCHEME 

In principle, the so-defined discrete version of the uncoupling technique leads to an appropriate 
numerical solution of the equations for the vector potential. In practice, however, this can be very 
inefficient unless one avoids lengthy and useless computations. Two ingredients can be employed 
to achieve a particularly handy solution procedure. 

First, the computation of the coefficients of the influence matrix can be extremely long and 
costly if it is necessary to know beforehand all the discrete analogues of the y,’s‘s, as pointed out 
before. One can remedy this by replacing the ‘test’ functions yr,, in (23) by fields w,, satisfying the 
same boundary conditions as vsr but having a small support near r. In the discrete case this 
would mean a support consisting of the set of elements with a non-empty intersection with rh. 
This simplified approach was introduced in Reference 6 for second-order vector problems and, in 
the context of the above defined tetrahedral element, it can be described as follows. 

Let w,,, be the field associated with edge eEE,. By the same arguments exploited in the 
previous section to define the boundary degrees of y t h , e ,  we simply use again relations (26) and (27) 
to define respectively the mean value ofn, - Wh,, over e and the normal derivatives of the tangential 

> 
Figure 3. Quadrilateral Qe = S,GL*)S 

T2 
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components of at the barycentres of F L1) and FL2). Except for those, all the remaining degrees 
of freedom of w , , ~  vanish by definition. Summarizing, each of the functions w , , ~  is defined by only 
five scalars, which makes the storage requirements and computer time needed to compute them 
far from excessive. 

Let us now turn our attention to the solution of problem (23 )  in its discrete version. Stated as it 
is, it may involve a considerable amount of computations, even for relatively coarse meshes. Here 
the conjugate gradient algorithm can be used in which the influence matrix is never explicitly 
computed, but just its product with suitable vectors to be updated along the iteration. This 
method, which was originally proposed in Reference 2 for the split solution of two-dimensional 
scalar biharmonic problems, actually leads to a very fast convergence in the determination of the 
solution Ah. Both the argument and the algorithm can be better described with reference to the 
continuous problem. 

Assume that p is a given function of H3I2(r) and that the quantity 

( A P ) ( S ’ )  = Jr u(w,,, !PSI P(S)dS 

has to be computed ( A  being the influence matrix). We claim that 

(4) (s’) = 4 w s , ,  VPh 

where yp is the solution of the problem 

vA2y/, = 0, 

n*y,Ir = P, 

V * y p I r  = 0, 

n x yclr = 0, 

n x V x yplr = 0. 

Indeed, according to an argument already employed in Section 3 ,  we have 

(AP)  (s’) = a( ws,(.), Jr 9(. ,  S ) P ( S )  ds). 

Thus it suffices to establish that the field 

is nothing but y.,(x). According to the definition of $(x, s), all the homogeneous relations of (29) 
are trivially fulfilled. On the other hand, letting an interior point x tend to s’, and denoting by 4 
the unit outer normal vector with respect to r at s’, we obtain from (16) 

lim lr ns, y(x, s] p ( s )  ds = nss yp(s’), 
x-s’ 

since this limit is 

(ni. ~ s ‘ ,  P ) ~ , z , I -  = (n. yS‘, ~ ) 3 / 2 , r  AS’). 
Now the algorithm can be presented as follows: Let 1, be an arbitrary initial approximation of 

1 in H 3/2( r). Determine yo by solving the problem 

v A 2 y 0  = V x f, 

n * y o l r  = 0, 

V * y o l r  = 0, 

n x yo!,- = n x a, 

n x V x yolr = n x b. 
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Then compute the residual po given by 

po = p o ( s ' ) c a ( w s ' , v / o ) - v - ~  w , , . v  x f I 
and set 

Next, for k = 1, 2, 3, . . . , compute y k  as the solution of the problem 
Po +- Po.  

v A2 v / k  = 0, 

n ' v k l T =  p k - l r  v k l r = O ,  

v *  v k  Ir = 0, . n x v x v k l r  = 0 

and set 
( A p k  - 1) (s') a(ws l ,  v k ) .  

Evaluate finally the quantities 

l k  

Ak 

P k  

sk 

p k  pk + s k p k  

( p k -  1, P k -  l ) / ( A p k -  1, p k  - 1 1 9  

I k -  1 - ' k p k -  1 9  

P k  - I - Y k A p k -  1, 

( P k ?  P k ) / ( P k  - 1 3  P k  - 11, 

until 1 1  I k  - I k  - 11 < E ,  in which case we set I c &. Here E is a small tolerance, 11 p 1 1  = (p, p)l" and 
the inner product (. , . )  is given by 

(p, P )  = P(s)p(s)ds. l r  
Going back to the discrete case, we compute a sequence { I s , , , }  c Ah of approximations of I , ,  

together with p h , k  and P , , ~  in I\, as well, for k = 0, 1, 2, . . . , by performing the following 
modifications in the above algorithm, besides the obvious ones. 

First, the bilinear form a is replaced by its discrete version a, defined b y  

Then I , , ~ E  [ V J 3  is computed instead of ( V k  by solving discrete problems of the type (24), in 
which the boundary data are deduced from p , , k ,  basically like in the case of vh,& described in 
Section 4. Notice, however, that now all the boundary edge and face degrees of freedom must be 
computed. The calculations are based again on the fact that any tangential derivative of the 
normal component of Y,,~ at the barycentre of a face of F, is a given linear combination of the 
three edge degrees of freedom associated with this face, which can be deduced directly from p,,, k .  

We skip the details for the sake of conciseness. 
Finally, since we work with Wh,&, e E E,, instead of w,, S E  r, the discrete analogue A,#,, of A p  is 

first defined edge by edge and then extended to the whole boundary rh as a function belonging to 
A,. Of course, once we have Ah, it suffices to create out of it, and in the same way as for v , ,~ ,  the 
boundary data for problem (24). The solution of the latter yields vh, the approximation of the 
vector potential v. 
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Notice that the solution of problems of the type (24) accounts for the bulk of the total 
computational effort required to obtain r,,. However, since the very same scalar solver is 
employed in the whole process, there is only one matrix to be stored and factorized. Actually, the 
numerical results given in Reference 4 show a very good performance of such an algorithm in the 
sense that fast convergence is achieved at a rather low cost for three-dimensional problems. 

6. CONCLUDING REMARKS 

Another finite element discretization based on tricubic Hermite polynomials in parallelepipeds is 
currently being implemented for the solution of the problem under study. Although its applica- 
tion is restricted to domains which can be subdivided into rectangular portions, it should 
generate more accurate results since it is a conforming second-order element. A comparative 
numerical study with the non-conforming quadratic element considered in this paper will be 
reported in due course. It is also our purpose to address in the near future the question of how the 
numerical technique adopted in this work can be extended to the important and delicate case of 
non-simply connected domains. As a final comment, we add that the application of the proposed 
techniques to the Navier-Stokes equations is possible. However, in this case the system remains 
coupled owing to the convective terms. A study is currently being carried out to deal with such a 
difficulty by means of suitable iterative schemes. 
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